
PHYSICAL REVIEW E DECEMBER 1999VOLUME 60, NUMBER 6
Calculation of electromagnetic properties of regular and random arrays of metallic
and dielectric cylinders
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A method is developed to calculate electromagnetic properties of arrays of metallic and dielectric cylinders.
It incorporates and exploits cylindrical boundary conditions and Rayleigh identities for efficient, high-accuracy
calculation of scattering off individual layers that are stacked into arrays using scattering matrices. The method
enables absorption, dispersion, and randomness to be incorporated efficiently, and reproduces known results
with vastly improved speed and accuracy. It is used to demonstrate existence of states introduced into photonic
band gaps of a dielectric array by disorder, and anomalous absorption behavior in arrays of aluminum cylin-
ders.@S1063-651X~99!01511-1#

PACS number~s!: 03.50.De, 42.25.Bs, 78.20.Bh, 78.20.Ci
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We present an efficient, high-accuracy method to cal
late the electromagnetic properties of regular or random
rays of cylinders in a stratified background. The optical pro
erties of such arrays, regular or random, are being studied
application to novel photonic devices and band-gap mat
als, with the aim of controlling the flow of light. Materials o
this type are the optical analogs of semiconductors, and
loring of their band structure, density of states, defects,
wave localization properties is a promising tool for the d
sign of materials with specified optical properties@1,2#.

Our method, which is constructed for geometries as
Fig. 1, has advantages of generality, accuracy, and spee
can deal with any number of nonoverlapping cylinders in
unit cell of each layer, arranged arbitrarily. It uses local c
ordinates around each cylinder for easy and accurate im
sition of boundary conditions at their surfaces, even wh
the refractive index contrast with the embedding medium
arbitrarily large. It achieves its speed by dealing with ea
layer as a separate problem, then coupling layers by a re
rence technique, avoiding the inversion of large matrices
also allows one to use measured optical properties, so
idealized~e.g., Lorentz! models of the materials are not re
quired. Though some elements of our technique are u
elsewhere, it is unique in uniting and generalizing them i
single formulation. By contrast, plane-wave methods@3# suf-
fer inaccuracy due to the Gibbs phenomenon when the in
contrast is large, as in metallic systems, the transfer ma
method @4,5# suffers from instability and inaccuracy fo
structures with a moderate or large number of inclusions
unit cell, while finite-difference time-domain methods@6# re-
quire simple analytic forms for the material response.

The class of methods most closely related to ours is
Korringa-Kohn-Rostoker~KKR! type, which have been
widely used to calculate electronic energy bands in sol
and which implicitly incorporate lattice sums in matrix el
ments. The closest relative, the layer KKR method of S
fanou et al. @7#, was developed for spheres. However, th
method uses the relatively slow Ewald summation techni
to evaluate matrix elements, whereas we use rapid, accu
expressions for the global lattice sums due to Twersky@8#.
We also use local lattice sums for each of the cylinders in
PRE 601063-651X/99/60~6!/7614~4!/$15.00
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unit cell of each layer to improve accuracy and speed furth
We note that of the over 20 articles in the photonic band g
bibliography@9# dealing with metallic photonic crystals, a
use the Drude model rather than measured optical prope
of real metals, as used here. Some recent work@10# does use
measured properties, but deals with a single grating of c
inders, not a stack of gratings. Finally, although some ot
methods can deal with inclusions of arbitrary shape, sub
to the inaccuracies mentioned above, they are most o
applied to structures with cylindrical inclusions, the structu
for which our method is optimized and one that allows t
study of a wide range of physical phenomena.

We present results that highlight the key advantages
our method. The first concerns stacks of cylinders with r
dom refractive indexes, for which our results are more ac
rate and of higher resolution than any presented before. T
lets us identify strongly polarization dependent, disord
induced features in the photonic band gap. We also cons
a regular stack of aluminum cylinders, for which the use
measured optical properties leads to pronounced and sur
ing new absorption features.

FIG. 1. Three layers of a grating stack are shown, together w
the incident wave and the reflected and transmitted zeroth orde
diffraction from the stack.
7614 © 1999 The American Physical Society
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We consider a plane wave of wavelengthl incident in
free space at an angleu i on the structure in Fig. 1, in which
each layer has a unit cell ofNc nonoverlapping cylinders
with radii al and refractive indexesnl , located with centers
on the midline withx5cl . This cell is replicated with period
D along thex axis; d5D/Nc is the mean separation of cy
inders. There areNL layers in the full structure, with the
separationh chosen to equald for present purposes, althoug
this is not essential. Note thatal and nl may vary between
cylinders, andcl may vary between layers. The only esse
tial requirement is that a common periodD can be identified
for all layers. We solve the scattering problem using
method devised for normal incidence@11# and later general-
ized to arbitraryu i @8#. We generalize it to arbitraryNc and
NL .

The fields around each cylinder are specified in terms
single component (V5Ez for TM polarization,V5Hz for
TE polarization, wherez is the direction of the cylinder
axes!. The potential is specified in local polar coordinat
(r l ,u l) via the Bessel expansion

V~r l ,u l !5 (
m52`

`

@Am
l Jm~krl !1Bm

l Ym~krl !#e
imu l, ~1!

for r l.al , with a similar expansion forr l,al . These ex-
pansions are matched atr l5al using continuity of tangentia
field components. This enables the internal (r l,al) coeffi-
cients to be eliminated, giving

Am
l 52Mm

l Bm
l , ~2!

where theMm
l depend on polarization, wave numberk, and

nl @12#. The boundary conditions at the cylinders are th
satisfied forany complexnl , without exhibiting the Gibbs
phenomenon that plagues Fourier methods.

The coefficientsBm
l are found using a Rayleigh identit

@13#, according to which the first term in Eq.~1!, correspond-
ing to the source-free part ofV, must have its sources on a
cylinders exceptl, or at infinity. Hence,

(
m52`

`

Am
l Jm~krl !e

imu l5exp@ ik~x sinu i2y cosu i !#

1 (
m52`

`

(
qÞ l

Bm
q Ym~kur l2rqu!eimu lq, ~3!

whereu lq is the polar angle ofr l2rq and the sum overq
Þ l includes all cylinders butl in the central unit cell, and al
cylinders in other cells. The Bloch condition and Graf’s a
dition theorem@14# are used to give a set of linear equatio
for Bm

l :

(
m52`

`

Sn2mBm
l 1 iM n

l Bn
l 1 (

q51,qÞ l

Nc

(
m52`

`

Sn2m
lq Bm

q

52 i ~21!n exp@ ikcl sinu i #exp~ inu i !. ~4!

Here theSm
lq are lattice sums for the local environment

each cylinder, which are used to reduce the sums over
inders in Eq.~4! to just those lying in the central unit cel
They can be obtained from global lattice sumsSm using
-

a

a

s

-

l-

Graf’s addition theorem. The global sums are evaluated
ing methods described previously@8,13#.

For givenu i , Eq.~4! is solved for theBm
l , from which the

coefficients of outgoing plane waves exp@i(apx1xpy)# from
the given layer are determined:Rp in the 1y ~reflection!
direction andTp in the 2y ~transmission! direction. Here

xp5(k22ap
2)1/2, with

ap5k sinup5k sinu i12pp/D, ~5!

Rp5
1

iDxp
(

m52`

`

(
l 51

Nc

Bm
l e2 i (mup1apcl ), ~6!

and similarly forTp . The amplitudesRp and Tp constitute
one column of the scattering matricesr andt, respectively;
the full matrices follow by varyingu i over the anglesup of
the diffraction orders of the layer. They contain the da
needed from one layer in order to solve a stack. In our c
culations we takeupu<P and umu<M , so NM52M11 is
the number of cylindrical harmonics used andNP52P11 is
the order of the scattering matrices used to couple the lay

If reflection r j and transmissiont j matrices for layersj
51 to N are known, the reflectionR and transmissionT
matrices with layerN11 added are

RN115rN111tN11RN~I2rN11RN!21tN11 , ~7!

TN115TN~I2rN11RN!21tN11 , ~8!

whereI is the identity matrix of orderNP . We thus recur-
sively find the complex reflection and transmission coe
cients of a stack with an arbitrary numberNL of layers. Fur-
ther details will be given elsewhere@15#.

Accuracy was verified by comparing the results for
regular array of dielectric cylinders with those of Bellet al.
@5#, a layer of aluminum cylinders with those of Horwit
et al. @16#, and transmission of multiple layers of perfect
conducting cylinders with band structures for square a
hexagonal arrays@17#. We also checked reciprocity and en
ergy conservation, which are satisfied to machine precis
independent of truncation to finiteNM and NP , even for
absorbing cylinders.

ParametersNM andNP are determined byl, thenl , and
the minimum distance between cylinders;NM is set by con-
vergence for a single layer,NP by that for the stack. At long
wavelengths we obtain accurate results withNP53 or 5, and
NP increases asl and h decrease. For short wavelength
NM;a/l, while at very long wavelengths accurate resu
are obtained usingNM53 and NP51, with the scattering
matrices reducing to scalars. For large systems the run
scales asNL max$(NMNc)

3,NP
3%, the first term in the brackets

is due to matrix inversions for a single layer, and the seco
arising from inversions needed for layer coupling. The line
dependence onNL means we can treat systems with largeNL
much more efficiently than direct inversion, nonlayer me
ods @18#, which scale asNL

3 .
Below we consider periodic square arrays of cylinders

identical radius in free space. In Figs. 2 and 3, we consid
stack of ten layers of dielectric cylinders, withNc55, refrac-
tive indexes uniformly distributed between 2.8 and 3.2,a
50.3d, andD55d. The solid line in Fig. 2 shows transmit
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tance vs wavelength for TM polarization, averaged over 1
realizations per wavelength. Forl'0.3D51.5d, NM521,
andNP527 yielded transmittances accurate to five decim
places, taking around 40 s per wavelength per realization
a 500 Mflop processor. Forl'20D5100d, NM59, and
NP51 sufficed, taking around 5 s per wavelength per rea
ization.

In Fig. 2 we also compare the transmittance of the r
domized stack with that of its periodic counterpart~dashed
line!. The transmittance is not strongly affected by disord
except at the long wavelength sides of the two band ga
causing them to narrow. Note the fine structure in the fi
gap and the exponential behavior of the attenuation co
cient a vs k evident in the inset to Fig. 2. Here,a5
2^ ln T&/NLh, whereT is the total energy transmitted in a
propagating orders and̂•••& denotes ensemble averagin
This shows formation of an Urbach-like tail, the extension
the spectrum of states into the gap by disorder, as in an
gous semiconductor systems@19#. The asymmetry in the ef
fects of disorder on the band gaps indicates that states o
low-frequency side of the gap are more affected by ind
disorder than the high-frequency ones@2#. Figure 2 should be

FIG. 2. Transmittance averaged over 100 realizations vs wa
length for a random dielectric array with parameters given in
text. Inset: intensity attenuation coefficienta vs k. The dot-dash
line highlights the Urbach tail.

FIG. 3. As for Fig. 2, but for TE polarization.
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compared with Fig. 4 of Sigalaset al. @20#, obtained using a
transfer-matrix method@4# whose results were less accura
(620%) and did not have the resolution to exhibit the phy
cally significant features evident here.

Figure 3 is similar to Fig. 2 but is for wavelengths in T
polarization. The first band gap is weak, so the effects
disorder are clearest in the prominent second gap, whic
strongly narrowed, with states entering from both sides. T
inset shows two Urbach tails regions with different slop
TE polarization thus shows asymmetry similar to TM pola
ization ~Fig. 2!. The periodic structure has a narrow ba
aroundl51.63d, which is almost eliminated by disorder.

The right side of Fig. 4 shows reflectance, transmittan
and absorption vs wave number atu i50 for a periodic
square stack of 25 layers of aluminum cylinders, withd
51 mm, a50.2 mm, and complex refractive index from
standard tables@21#. The number of layers is chosen so th
stack’s long wavelength transmittance is negligible. Note
strong absorption by the array, even where the reflectanc
solid aluminum is over 98%. The left side of Fig. 4 show
the photonic band structure for a square array of perfe
conducting cylinders: absorptance peaks at right corresp
to the photonic bands at left. Asa varies, the bands in Fig. 4
move, with the position of the lowest scaling asl2

} ln(d/2a) @17,22#. Thus, asa decreases, the absorption pe
moves to longer wavelengths and widens. Hence, rem
ably, asa→0 the enhanced absorption shifts further into t
region where bulk aluminum strongly reflects. The curves
the right panel of Fig. 4 correspond to a single angle
incidence~the vertical line throughG) in the left panel. The
fact that these curves are sensitive to the full bandG-X is due
to the infinite number of grating ordersp in Eq. ~5!, which
sample this whole interval.

In summary, we have developed a method of calculat
electromagnetic properties of regular or random arrays

e-
e

FIG. 4. Left panel: photonic band diagram for TM polarizatio
(V5Ez) for a square array of perfectly conducting cylinders, w
parameters given in the text andk along theG-X axis shown in the
inset; the horizontal axis gives values ofk sinui . Right panel: re-
flectanceR, transmittanceT, and absorptanceA for 25 layers of
aluminum cylinders. Shaded bars between the panels denote b
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cylinders, which can provide results of unprecedented ac
racy and resolution for a wide variety of problems, usi
workstations rather than supercomputers. Already,
method has revealed the existence of Urbach tails of st
introduced into photonic band gaps by disorder, and ano
lous absorption behavior in arrays of metal cylinders. W
d,

on
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will pursue further applications to dispersive and lossy ph
tonic crystals, and to the study of localization in tw
dimensional disordered systems.

We thank D.R. McKenzie for helpful suggestions. Th
Australian Research Council supported this work.
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